- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bajaj, Goonmeet (3)
-
Parthasarathy, Srinivasan (3)
-
Sheth, Amit (2)
-
Bandyopadhyay, Bortik (1)
-
Current, Sean (1)
-
Gaur, Manas (1)
-
Hyder, Ayaz (1)
-
Kursuncu, Ugur (1)
-
Myers, Christopher W. (1)
-
Schmidt, Daniel (1)
-
Shalin, Valerie L (1)
-
Usha Lokala, Manas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bajaj, Goonmeet; Kursuncu, Ugur; Gaur, Manas; Usha Lokala, Manas; Hyder, Ayaz; Parthasarathy, Srinivasan; Sheth, Amit (, Studies in health technology and informatics)d public health. For such high-impact areas, accurately capturing relevant entities at a more granular level is critical, as this information influences real-world processes. On the other hand, training NER models for a specific domain without handcrafted features requires an extensive amount of labeled data, which is expensive in human effort and time. In this study, we employ distant supervision utilizing a domain-specific ontology to reduce the need for human labor and train models incorporating domain-specific (e.g., drug use) external knowledge to recognize domain specific entities. We capture entities related the drug use and their trends in government epidemiology reports, with an improvement of 8% in F1-score.more » « less
-
Bajaj, Goonmeet; Current, Sean; Schmidt, Daniel; Bandyopadhyay, Bortik; Myers, Christopher W.; Parthasarathy, Srinivasan (, Topics in Cognitive Science)
An official website of the United States government

Full Text Available